

November, 2022 - Release 1.1

Integrating IBM Application

Discovery and Delivery

Intelligence (ADDI) in CI/CD

pipelines

An IBM Document from

IBM Z DevOps Acceleration Program

Abstract
This document describes how to integrate IBM Application Discovery and

Delivery Intelligence (ADDI) into Git-based CI/CD pipelines.

Mathieu Dalbin
mathieu.dalbin@fr.ibm.com

mailto:mathieu.dalbin@fr.ibm.com

Integrating IBM Application Discovery and Delivery Intelligence (ADDI) in CI/CD pipelines Page 2/13

Table of content

1 INTRODUCTION ..3

2 AUTOMATING TASKS IN ADDI ...4

2.1 AUTOMATING THE SCAN PROCESS ... 4

2.2 AUTOMATING THE REFRESH OF SOURCE ARTIFACTS .. 4

3 INTEGRATING ADDI WITH GIT ...5

4 INTEGRATING ADDI IN THE CI/CD PIPELINE ..6

4.1 SETTING PRE-REQUISITES UP .. 6

4.2 IMPLEMENTING THE AUTOMATION PROCESS ... 7

5 EXAMPLE OF ADDI INTEGRATION INTO AN EXISTING CI/CD PIPELINE ...8

5.1 PRE-REQUISITES FOR THE GITLAB PLATFORM .. 8

5.2 SETTING UP THE PRE-REQUISITES ON ADDI .. 8

5.3 IMPLEMENTING THE INTEGRATION WITH THE CI/CD PIPELINE .. 10

6 CONCLUSION .. 13

Integrating IBM Application Discovery and Delivery Intelligence (ADDI) in CI/CD pipelines Page 3/13

1 Introduction

IBM Application Discovery and Delivery Intelligence (ADDI) is a product that maps z/OS artifacts belonging

to Mainframe applications, providing the developers with reports and graphs that help them understand

the relationships between the different z/OS components. Initially introduced to support the most

common languages of the z/OS platform (Cobol, PL/1 and Assembler), ADDI has been enhanced over the

last few years to support more and more artifact types: CICS and IMS definitions, DB2 tables, JCL, job

schedulers, and many more.

For IT departments using ADDI, this product has become the one-stop repository that contains all the

necessary information to understand how the different components of a z/OS application work together.

By providing detailed reports on cross-relationships and visual representation of artifact interconnections,

ADDI facilitates the developers’ tasks, especially when it comes to discovering a new application, searching

for a text string over multiple files or performing an impact analysis before introducing a change.

ADDI builds its reference repository by scanning artifacts (Cobol, PL/1 or Assembler source code files, CICS

CSD files, job scheduling plans, etc.) that are typically retrieved directly from the z/OS system. For source

files, ADDI can integrate with popular legacy SCM solutions, like Endevor or ChangeMan, and extract the

necessary information or source code, to perform its scan process. This step, known as a “Build” operation

in ADDI, is driven by a major component of the product: the AD Build Client. To build the cross-reference

database, the Build Client processes all the source files made available in the scope of an application and

populates the corresponding tables in its repository.

Integrating IBM Application Discovery and Delivery Intelligence (ADDI) in CI/CD pipelines Page 4/13

2 Automating tasks in ADDI

With the growing number of projects and z/OS artifacts to manage, administrative users of ADDI raised

the need for improved mechanisms to assist with their daily tasks. Originally, the Build Client was mainly

a graphical interface, used for administrative tasks like creating a project, populating it with artifacts and

building the project. To facilitate the management of ADDI and avoid manual intervention from the ADDI

administration team, the Build Client was enhanced to support Batch commands. Through these

additional capabilities, most (if not all) of the commands available through the graphical interface of the

Build Client can be triggered through its command-line interface, which enables ADDI to be an integral

part of the DevOps ecosystem. These Command-Line options are documented on the ADDI IBM Docs

website1.

2.1 Automating the scan process

The two main features that are essential to take full advantage of the ADDI product are the Build function

(or Make function) and the refresh of existing source artifacts. As explained above, the Build function

performed by the Build Client is processing the whole list of files that are part of a given project. This Build

function is typically used when the project is created in ADDI, to correctly set the repository up and make

sure all the artifacts are scanned. When the project has been correctly created, another feature is

preferably used, to update the project database in ADDI’s repository: the Make function. This feature,

instead of processing all the files of the project, only processes the files that have changed since the last

scan. Using the Make function drastically optimizes the scan process, both in terms of resources needed

and elapsed time, and it is the recommended scan action for existing projects. This Make command can

be called in a batch command as follows:

IBMApplicationDiscoveryBuildClient /m1 ProjectName /m2 y /m3 y

2.2 Automating the refresh of source artifacts

The second important feature to leverage in this integration process is known as Upgrade Mainframe

Members (UMM) in the Build Client. The purpose of this function is to refresh the source artifacts of a

given project by retrieving them from their original location. For it to work properly, a Synchronization file

must be created prior to using this function, in which references to storage locations for each type of

artifacts are declared. The ADDI documentation contains a section2 which details the expected content

for this Synchronization file. The path of this Synchronization file must then be specified in the project’s

configuration to fully enable this feature. Once the configuration is set up, this Synchronization task can

be triggered through the Build Client command-line interface with the following command:

IBMApplicationDiscoveryBuildClient /umm1 ProjectName

1 Build Client batch commands: https://www.ibm.com/docs/en/addi/6.1.1?topic=commands-ii-description-ad-
build-client-batch
2 Synchronize Member configuration file: https://www.ibm.com/docs/en/addi/6.1.1?topic=samples-synchronize-
members-configuration-file-examples

https://www.ibm.com/docs/en/addi/6.1.1?topic=commands-ii-description-ad-build-client-batch
https://www.ibm.com/docs/en/addi/6.1.1?topic=commands-ii-description-ad-build-client-batch
https://www.ibm.com/docs/en/addi/6.1.1?topic=samples-synchronize-members-configuration-file-examples
https://www.ibm.com/docs/en/addi/6.1.1?topic=samples-synchronize-members-configuration-file-examples

Integrating IBM Application Discovery and Delivery Intelligence (ADDI) in CI/CD pipelines Page 5/13

3 Integrating ADDI with Git

As mentioned earlier, the Upgrade Mainframe Members feature is used to retrieve the latest versions of

z/OS artifacts as defined by the Synchronization file. In ADDI 6.0.2 (released in June 2021), this function

was enhanced to support an additional synchronization mechanism, based on local filesystem changes.

With this new capability, ADDI can detect new versions of files that are already on the filesystem of the

machine hosting the ADDI product. This new synchronization capability enables the use of Git to retrieve

the source artifacts.

To support this new feature, an additional keyword was introduced in the Synchronization file, to specify

that updates be checked against the local filesystem. The LOCAL_REMOTE keyword is a new option for

the second field, known as “Library Type”, of each Synchronization file entry. The syntax is described in

the ADDI documentation3. The path of the directory containing the sources on the machine hosting ADDI

must then be specified, to allow the Build Client to refresh the members that have changed since the last

update. Filters can also be applied to narrow down the selection criteria. Using filters can be extremely

helpful if directories contain different types of artifacts mixed together.

As described in the ADDI documentation, the LOCAL_REMOTE keyword can be used in the Synchronization

file entries as follows:

MyProject, LOCAL_REMOTE, C:\IBM AD\Mainframe Sources\Local Sources, zOS Cobol, COBOL_MVS

MyProject, LOCAL_REMOTE, C:\IBM AD\Mainframe Sources\Local Sources, zOS Cobol, COBOL_MVS,

filter(*.cbl|*.cob)

With this configuration, it is not the responsibility of ADDI to retrieve the members from z/OS or from any

other source, as it only checks which files have changed on the filesystem. This is where Git plays a major

role to retrieve these files from a central Git provider. Assuming the source code files of a z/OS application

are stored in a Git repository, a Git client installed on the machine where ADDI is hosted can retrieve the

source files, by issuing Git commands like clone and/or fetch.

3 Synchronize Member configuration file: https://www.ibm.com/docs/en/addi/6.1.1?topic=samples-synchronize-
members-configuration-file-examples

https://www.ibm.com/docs/en/addi/6.1.1?topic=samples-synchronize-members-configuration-file-examples
https://www.ibm.com/docs/en/addi/6.1.1?topic=samples-synchronize-members-configuration-file-examples

Integrating IBM Application Discovery and Delivery Intelligence (ADDI) in CI/CD pipelines Page 6/13

4 Integrating ADDI in the CI/CD pipeline

The primary objective of integrating ADDI into a DevOps CI/CD pipeline is to provide the developers with

valuable insights about the structure of the z/OS applications they are maintaining or enhancing. ADDI

helps the developers understand the relationships between the different z/OS components, and is a

powerful solution to perform impact analysis or document applications’ structures. However, it is

important for developers to work on up-to-date information, and the freshness and accuracy of the data

collected by ADDI plays a crucial role to ensure the analysis is correct. To keep up with all the changes

occurring on z/OS source code files or artifacts, the best strategy to keep the ADDI model up to date is to

implement automation, to update and build changes in ADDI on a regular basis.

4.1 Setting pre-requisites up

In the previous sections, the integration with Git and the command-line options of the Build client were

described. All the necessary pieces are now available to complete the integration of ADDI into an

automated CI/CD pipeline. Before implementing the automated process to update and build ADDI

projects, some technical pre-requisites must first be set up.

To enable the use of Git to synchronize source files stored in a Git repository, a Git client must be installed

on the machine where ADDI is running, because the source components will be cloned there. To ensure

the Git repository is accessible and can be safely cloned to the ADDI machine, a git clone operation can be

manually performed. In subsequent steps, it is assumed this clone process will be performed by the CI/CD

orchestrator, typically through its own mechanism.

On ADDI, a project must exist prior to the use of the Synchronization feature. It is recommended to create

the project first, either through the Build Client user interface or with a command-line option. The project

must then be enabled to support the Synchronization file, and this option is set through the AD

Configuration Server4.

The Synchronization file must exist and be populated with correct entries before running the automation

process. To create the Synchronization file, the structure of the Git repository must be known: typically,

each type of artifact lives in its own subdirectory in the Git repository. With this layout, each subdirectory

will likely correspond to a line entry in the Synchronization file, potentially with filtering.

Though the automated process could be enabled when the above pre-requisites are met, it is highly

recommended to manually test these operations beforehand. The list of tasks to perform are as follows:

1. Manual git clone of the Git repository on the ADDI machine

2. Manual Upgrade Mainframe Members operation through the ADDI’s Build Client

3. ADDI Build Client’s Build operation, to make sure the project can be built cleanly without any

errors

4. Verification of the project in ADDI’s Analyze Client

4 Synchronizing Mainframe Members: https://www.ibm.com/docs/en/addi/6.1.1?topic=tasks-synchronizing-
mainframe-members

https://www.ibm.com/docs/en/addi/6.1.1?topic=tasks-synchronizing-mainframe-members
https://www.ibm.com/docs/en/addi/6.1.1?topic=tasks-synchronizing-mainframe-members

Integrating IBM Application Discovery and Delivery Intelligence (ADDI) in CI/CD pipelines Page 7/13

Performing a manual Build through the Build Client helps to verify the correct execution of this task,

including the correct processing performed by the Batch Server in ADDI (i.e., the generation of the Cross

database and the creation of graphs in the GraphDB Database). At the end of this Build process, users

should be able to consult reports and graphs for the given project in ADDI’s Analyze Client.

4.2 Implementing the automation process

When all the pre-requisites are met and verified, the automation process can be implemented and

enabled. To enable the developers with fresh data, the automated update and build typically occurs when

the state of a branch in the Git repository changes, as described by the adopted Git branching model. In

a traditional branching model, a branch corresponds to the application currently being in development

(called the Development branch) and a second branch describes the application currently running in

production (often called the Main branch). Developers can be interested in browsing the corresponding

projects in ADDI, to visualize the differences between these two states.

In a DevOps implementation, CI/CD pipelines are typically triggered after each change on specific

branches. This mechanism can be leveraged to implement the required automation to update ADDI. In

this configuration, an additional git clone action can be driven by the pipeline orchestrator to take place

on the ADDI machine, and ADDI Build Client command-line interface actions can be integrated in the

pipeline logic, as described in a previous section.

Integrating IBM Application Discovery and Delivery Intelligence (ADDI) in CI/CD pipelines Page 8/13

5 Example of ADDI integration into an existing CI/CD pipeline

The following example is leveraging the GitLab platform, but a similar implementation could easily be

performed for any other CI/CD orchestrators using similar mechanisms to clone the Git repository to the

Windows Virtual Machine hosting the ADDI installation, and to remotely execute commands on this

machine.

5.1 Pre-requisites for the GitLab platform

As the CI/CD pipeline is driven by the GitLab CI/CD feature, a GitLab Runner must be installed on the

machine where ADDI is running. The purpose of the GitLab Runner is to execute commands that are

configured for the pipeline steps, including an automatic Git clone/fetch command to refresh the local

clone of the project’s Git repository. The installation of the GitLab Runner is not covered in this

documentation, but it is detailed in the official GitLab documentation5.

Another pre-requisite to fulfill is the installation of a Git client on the same machine. This Git client will be

used to clone the content of the Git repository that contains the source code to analyze with ADDI. The

Git client is available on many platforms and can be downloaded from the official Git website6.

Documentation about the installation of the Git client can be found online7.

5.2 Setting up the pre-requisites on ADDI

The next step of the setup would be the creation of the project in ADDI. In the ADDI Build Client, navigate

to File → New → New Project… to create a new project. Specify the Mainframe main languages option

for the type of project to create. You are then prompted to name the project to create and the types of

artifacts your project can contain:

5 GitLab Runner Installation on Windows: https://docs.gitlab.com/runner/install/windows.html
6 Git Downloads website: https://git-scm.com/downloads
7 Git installation documentation: https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

https://docs.gitlab.com/runner/install/windows.html
https://git-scm.com/downloads
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Integrating IBM Application Discovery and Delivery Intelligence (ADDI) in CI/CD pipelines Page 9/13

In this example, the project is called RetirementCalculator. Additional options like the database

attachment to use are also specified, along with the Cross Applications Analysis or the Business Rules

Discovery. The creation of the project can now be finalized. The database for this project is then created.

The next step is to configure the project to enable the use of a Synchronization file. Using the ADDI’s

Administration Dashboard, select the Configure → Install Configurations tab, and navigate to the IBM

Application Discovery Build Client install configuration link. On the displayed panel, the members

synchronization must be enabled, and the path to a Synchronization file must be specified:

This file will contain the locations where the Build Client searches for updates on project’s source files.

The contents of the file will be detailed later in this document.

To first build the project, source files must be added to the project. In the process of setting up the

integration, a manual Git Clone command will be run, to properly initialize the local Git repository. In this

sample setup, the Git repository is made up of several branches which correspond to different states of

the application. The GitLab Runner is configured to clone projects to a specific location containing the

name of the branch in Git, controlled by the GIT_CLONE_PATH parameter. Using this capability, the

location of the local Git repository is set to C:\Program Files\gitlab-

runner\builds\RetirementCalculator\ADDI-Integration, where the branch that will be scanned through

ADDI is called ADDI-Integration. The Git repository is locally cloned using a git clone command:

git clone http://gitlab.dat.ibm.com/dat/retirementCalculator.git "C:\Program Files\gitlab-

runner\builds\RetirementCalculator\ADDI-Integration"

The content of the Git repository is now available on the local filesystem of the machine where ADDI runs:

Integrating IBM Application Discovery and Delivery Intelligence (ADDI) in CI/CD pipelines Page 10/13

The source files can now be added to the project through the Build Client. For all the artifact types of your

project, right-click on the corresponding virtual folder, and select the Add All Files from Folder menu. In

the next panel, specify the folder path where your source files where cloned.

Here, the path C:\Program Files\gitlab-runner\builds\RetirementCalculator\ADDI-

Integration\retirementCalculator\cobol is specified for the zOS Cobol virtual folder, for instance.

The same operation must be repeated for the different types of artifacts of the project. When done, the

project is ready to be built with the Build Client. Select the Build → Build Project menu option to build the

project. If any major error is encountered, some other artifacts may be needed to complete the build

process. When the project is successfully built, the initial ADDI setup can be marked as complete.

5.3 Implementing the integration with the CI/CD pipeline

To automate the synchronization and the Make of the ADDI project, the next step is to test the command-

line options of the Build Client. However, prior to running the Build Client batch commands, the

Synchronization file must be correctly populated. This file contains entries that dictate where the Build

Client will look for updates. Each line describes the type of artifacts to load and the folder location where

these artifacts are stored.

For the RetirementCalculator project used as an example in this document, the files are stored in

subfolders of the C:\Program Files\gitlab-runner\builds\RetirementCalculator\retirementCalculator

folder. Three main artifact types are part of this project: Cobol programs, Cobol Include files and JCLs. The

Synchronization file contains 3 entries referring to this setup:

*Synchronization against LocalSources

RetirementCalculator,LOCAL_REMOTE,C:\Program Files\gitlab-runner\builds\RetirementCalculator\ADDI-

Integration\retirementCalculator\cobol,zOS Cobol,COBOL_MVS

RetirementCalculator,LOCAL_REMOTE,C:\Program Files\gitlab-runner\builds\RetirementCalculator\ADDI-

Integration\retirementCalculator\copy,Cobol Include,COPY

RetirementCalculator,LOCAL_REMOTE,C:\Program Files\gitlab-runner\builds\RetirementCalculator\ADDI-

Integration\retirementCalculator\jcls,JCL,JCL

Integrating IBM Application Discovery and Delivery Intelligence (ADDI) in CI/CD pipelines Page 11/13

To validate the update of source files through the Synchronization file, the following command can be

used:

IBMApplicationDiscoveryBuildClient /umm1 RetirementCalculator

This command launches the Build Client with no graphical interface, to update the source files from the

local filesystem.

The next command to check is the make of the project.

IBMApplicationDiscoveryBuildClient /m1 RetirementCalculator /m2 y /m3 y

When the process is complete, a log file is created, and made available in the project folder. It should

show that no updates are found (since the Build was previously performed on the same source files):

The next setup phase is to implement these two command-line actions in the CI/CD pipeline. In this

example, GitLab will be used to drive the execution of the CI/CD pipeline. An additional step of the pipeline

is then declared to call the ADDI Build Client with the two command-line options.

The pipeline description for GitLab is as follows:

ADDI Refresh:

 stage: Analysis

 tags: [addi]

 dependencies: []

 variables:

 ADDI_PROJECT_NAME: RetirementCalculator

 script:

 - |

 & 'C:\Program Files\IBM Application Discovery and Delivery Intelligence\IBM

Application Discovery Build Client\Bin\Release\IBMApplicationDiscoveryBuildClient.exe' /umm1

${ADDI_PROJECT_NAME}

 & 'C:\Program Files\IBM Application Discovery and Delivery Intelligence\IBM

Application Discovery Build Client\Bin\Release\IBMApplicationDiscoveryBuildClient.exe' /m1

${ADDI_PROJECT_NAME} /m2 y /m3 y

In the script section, the two Build Client commands are run in sequence, in a synchronous way. The first

command will synchronize the project based on the content of the Synchronization file, and the second

command will trigger the Make processing in ADDI.

Integrating IBM Application Discovery and Delivery Intelligence (ADDI) in CI/CD pipelines Page 12/13

The GitLab Runner has been configured to clone into a specific location, as specified by the

GIT_CLONE_PATH variable. In this sample setup, this variable is set to

$CI_BUILDS_DIR/$CI_PROJECT_NAME/$CI_COMMIT_REF_NAME, which resolves to C:\Program

Files\gitlab-runner\builds\RetirementCalculator\ADDI-Integration on the Windows machine where ADDI

is running. It is necessary to ensure that this path is consistent with the path configured in the

Synchronization file, to take updates of source files into account.

After applying a change to the EBUD01 Cobol program of the RetirementCalculator project, the execution

of the CI/CD pipeline shows the integration of the ADDI Refresh step. This step executed successfully and

shows the following output log:

On the machine where ADDI runs, a log file is created in the ADDI project’s folder once the Make process

is finished. This log file shows that the update to the EBUD01 program was correctly processed and built

by ADDI:

Shortly after this successful processing, the updated analysis is available through the Analyze Client in

eclipse.

Integrating IBM Application Discovery and Delivery Intelligence (ADDI) in CI/CD pipelines Page 13/13

6 Conclusion

This document describes how the integration of ADDI could be performed in a CI/CD pipeline. Depending

on the SCM solution and CI/CD orchestrator being used, this integration can slightly differ, thereby

leveraging other provided capabilities.

In this sample implementation, only one project is created in ADDI, but it may be interesting to have

different projects for different states of the same application. A project in ADDI could represent the

application in its ‘development’ state and another project could represent the application in production.

This implementation would require two distinct projects in ADDI, and some changes in the

Synchronization file and the CI/CD process. In this configuration, the number of entries in the

Synchronization file would double, due to configuration for the two projects referring to different

locations on the filesystem where branches are checked out.

Another option for the implementation would be to optimize the execution of the ADDI Build Client

commands. In the sample implementation described in this documentation, each change to the

Development branch of the Git repository triggers the pipeline to refresh ADDI. If too many updates are

occurring on the application, especially in its ‘development’ state, there may be some interest to run the

update process only once a day. This can be managed by a CI/CD orchestrator or using the cron utility.

In the pre-requisites setup, it is recommended to run the creation of the project manually, along with

some other Git commands to initially clone the Git repository to the local filesystem. Also, adding the files

from Git to the project through the Build Client is manually performed, to ensure the sources are correctly

loaded and eventually built. This whole process could also be automated as the Build Client provides

command-line options to create projects and add files to the projects. However, it is safer, at least for the

first project, to manually perform these operations to ensure a correct configuration. Automation could

be setup once the whole process is understood and mastered.

